218 research outputs found

    Chimeric retrogenes suggest a role for the nucleolus in LINE amplification

    Get PDF
    AbstractChimeric retrogenes, found in mammalian and fungal genomes, are bipartite elements composed of DNA copies of cellular transcripts either directly fused to each other or fused to the 3′ part of a LINE retrotransposon. These cellular transcripts correspond to messenger RNAs, ribosomal RNAs, small nuclear RNAs and 7SL RNA. The chimeras are likely formed by RNA template switches during reverse transcription of LINE elements by their retrotranspositional machinery. The 5′ part of chimeras are copies of nucleolar RNAs, suggesting that the nucleolus plays a significant role in LINE retrotransposition. RNAs from the nucleolus might have protective function against retroelement invasion or, alternatively, the nucleolus may be required for retrotranspositional complex assembly and maturation. These hypotheses will be discussed in this review

    Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A systematic survey of loci carrying retrotransposons in the genome of the rice blast fungus <it>Magnaporthe grisea </it>allowed the identification of novel non-canonical retropseudogenes. These elements are chimeric retrogenes composed of DNA copies from different cellular transcripts directly fused to each other. Their components are copies of a non protein-coding highly expressed RNA of unknown function termed WEIRD and of two fungal retrotransposons: MGL and Mg-SINE. Many of these chimeras are transcribed in various <it>M. grisea </it>tissues and during plant infection. Chimeric retroelements with a similar structure were recently found in three mammalian genomes. All these chimeras are likely formed by RNA template switches during the reverse transcription of diverse LINE elements.</p> <p>Results</p> <p>We have shown that in <it>M. grisea </it>template switching occurs at specific sites within the initial template RNA which contains a characteristic consensus sequence. We also provide evidence that both single and double template switches may occur during LINE retrotransposition, resulting in the fusion of three different transcript copies. In addition to the 33 bipartite elements, one tripartite chimera corresponding to the fusion of three retrotranscripts (WEIRD, Mg-SINE, MGL-LINE) was identified in the <it>M. grisea </it>genome. Unlike the previously reported two human tripartite elements, this fungal retroelement is flanked by identical 14 bp-long direct repeats. The presence of these short terminal direct repeats demonstrates that the LINE enzymatic machinery was involved in the formation of this chimera and its integration in the <it>M. grisea </it>genome.</p> <p>Conclusion</p> <p>A survey of mammalian genomic databases also revealed two novel tripartite chimeric retroelements, suggesting that double template switches occur during reverse transcription of LINE retrotransposons in different eukaryotic organisms.</p

    Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi

    Get PDF
    Background Filamentous fungi synthesize many secondary metabolites and are rich in genes encoding proteins involved in their biosynthesis. Genes from the same pathway are often clustered and co-expressed in particular conditions. Such secondary metabolism gene clusters evolve rapidly through multiple rearrangements, duplications and losses. It has long been suspected that clusters can be transferred horizontally between species, but few concrete examples have been described so far. Results In the rice blast fungus Magnaporthe grisea, the avirulence gene ACE1 that codes for a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) belongs to a cluster of 15 genes involved in secondary metabolism. Additional related clusters were detected in the ascomycetes Chaetomium globosum, Stagonospora nodorum and Aspergillus clavatus. Gene-by-gene phylogenetic analysis showed that in C. globosum and M. grisea, the evolution of these ACE1-like clusters is characterized by successive complex duplication events including tandem duplication within the M. grisea cluster. The phylogenetic trees also present evidence that at least five of the six genes in the homologous ACE1 gene cluster in A. clavatus originated by horizontal transfer from a donor closely related to M. grisea. Conclusion The ACE1 cluster originally identified in M. grisea is shared by only few fungal species. Its sporadic distribution within euascomycetes is mainly explained by multiple events of duplication and losses. However, because A. clavatus contains an ACE1 cluster of only six genes, we propose that horizontal transfer from a relative of M. grisea into an ancestor of A. clavatus provides a much simpler explanation of the observed data than the alternative of multiple events of duplication and losses of parts of the cluster

    Rational dilation problems associated with constrained algebras

    Full text link
    It is shown that rational dilation fails on broad collection of distinguished varieties associated to constrained subalgebras of the disk algebra of the form C + B A(D), where B is a finite Blaschke product with two or more zeros. This is accomplished in part by finding a minimal set of test functions. In addition, an Agler-Pick interpolation theorem is given and it is proved that there exist Kaijser-Varopoulos style examples of non-contractive unital representations where the generators are contractions.Comment: Page proof corrections included in this version

    Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae

    Get PDF
    The ACE1 and RAP1 genes from the avirulence signalling gene cluster of the rice blast fungus Magnaporthe oryzae were expressed in Aspergillus oryzae and M. oryzae itself. Expression of ACE1 alone produced a polyenyl pyrone (magnaporthepyrone), which is regioselectively epoxidised and hydrolysed to give different diols, 6 and 7, in the two host organisms. Analysis of the three introns present in ACE1 determined that A. oryzae does not process intron 2 correctly, while M. oryzae processes all introns correctly in both appressoria and mycelia. Co-expression of ACE1 and RAP1 in A. oryzae produced an amide 8 which is similar to the PKS-NRPS derived backbone of the cytochalasans. Biological testing on rice leaves showed that neither the diols 6 and 7, nor amide 8 was responsible for the observed ACE1 mediated avirulence, however, gene cluster analysis suggests that the true avirulence signalling compound may be a tyrosine-derived cytochalasan compound.Government of Egypt ScholarshipThe School of Chemistry at the University of Bristol and the Mark Evans ScholarshipKano State Government NigeriaMacArthur FoundationBayero UniversityNigerian Petroleum Technology FundMalaysian Govenment ScholarshipEP/F066104/
    • …
    corecore